




A1. A linear homogeneous dielectric of arbitrary shape is placed in a static electric field. There is 
no free charge density in the dielectric. Show that the polarization charge can appear only on the 
surface of this dielectric but not in the bulk. What happens if the dielectric is inhomogeneous, i.e. 
dielectric permittivity ( )ε r is dependent on coordinates? Write expression for the volume 
polarization charge density in terms of ( )ε r  and electric field ( )E r . 

Solution:  A volume polarization-charge density is given by Pρ = −∇ ⋅P , where P is polarization 
which is related to electric displacement D as 0ε= −P D E . For a linear dielectric, we have ε=D E

, where ε is dielectric permittivity. Therefore 01 ε
ε

 = − 
 

P D  and the volume polarization charge 

density reads 01P
ερ
ε

  = −∇ ⋅ −    
D . If the dielectric is homogeneous, i.e. ε  is space independent, 

we have 01 0P
ερ
ε

 = − − ∇ ⋅ = 
 

D . The latter equality follows from Gauss’s law which tells us that 

in the absence of free charge density 0∇ ⋅ =D . Therefore, the volume polarization charge density 
vanishes, so that the polarization charge can appear only on the surface.   

If the dielectric is inhomogeneous and the dielectric constant ( )ε r  depends on coordinates, 

polarization charge is in general non-zero.  It is given by 01P
ερ ε
ε

 = − ⋅∇ − 
 

E . 

A2.  Find the magnetic moment of a spherical shell of radius R rotating with frequency ω and 
having a constant surface charge density σ.   

 

Solution: 

Use the coordinates with the z axis along the rotating axis and 
the origin at the center of the sphere.  The surface current 
density on the spherical shell in the spherical coordinates is 

ˆsinRσω θ=K φ . 

where φ̂  is a polar unit vector.  The magnetic dipole moment 
is obtained by integrating over the sphere so that  
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B1. A slab of uniform volume charge density 0ρ  has its bottom and top surfaces at z = –d and z = 
0, respectively. Another slab of uniform volume charge density 0ρ−  is placed above, so that its 
bottom and top surfaces at z = 0 and z = d, respectively. Find the electric field and electrostatic 
potential in all space.  Sketch the electric field and the electrostatic potential as a function of z.   

Solution:  
The electric field depends only on z, and therefore Gauss’s law takes form 

( )
0

zE
z

ρ
ε

∂
=

∂
, 

where ( ) 0zρ ρ=  for 0d z− < < , ( ) 0zρ ρ= −  for 0 z d< < , and ( ) 0zρ =  for z d> . We 
integrate this equation from –d to z ( 0 z d< < ), taking into account the fact that, due to the charge 
neutrality of the system, there is no electric field at z d> . We therefore have 

0

( ), 0,1( )
( ), 0 .
z d d z

E z
d z z dε

+ − < <
=  − < <

 

Assuming ( ) 0zΦ =
 
at z d≤ −  as a reference, we integrate ( )E z  from –d to z ( 0d z− < < ), and 

obtain: 
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d
ε

Φ = − , we integrate ( )E z  from 0 to z ( 0 z d< < ) and obtain: 
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Φ = − − − = − + −∫  at 0 z d< < . 

The field and potential are sketched below: 

 
 

 



B2. Perfect conductors are known to completely screen magnetic fields in their interior by creating 
persistent surface currents. Consider a semi-infinite perfect conductor occupying volume z < 0 and 
having a flat surface at z = 0. An infinitely long straight wire is suspended at z = d above the 
conductor surface and carries current I parallel to the x direction. Find the surface current K 
induced on the perfect conductor surface.  Show that the total current on the surface is equal in 
magnitude to the current in the wire but flowing in the opposite direction.    

Solution: 

The surface current can be found from the boundary conditions which require a parallel component 
of magnetic field H to have discontinuity on the surface carrying surface current such that  

( )2 1− = ×H H K n  , 

where n is the normal to the surface pointing from region 1 to region 2.  Multiplying this equation 
by n from left, we find: 

( )2 1× − =n H H K . 

This follows from the fact that 1,2 1,2× = ×n H n H  and ( ) ( ) ( )× × = ⋅ − ⋅ =n K n K n n n n K K .  

In our case, assuming that ˆ=n z  is the outward normal to the surface of the perfect conductor, 
1 0=H  is the field inside the conductor, and 2=H H  is the field produced by the wire. We 

therefore have 
ˆ= ×K z H . 

Field H produced by the straight infinite wire is  

ˆ
2

I
sπ

=H φ  , 

where on the surface of the conductor 2 2s d y= +  and 
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We therefore obtain 
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The total current on the surface Is is obtained by the integration of current K. We find 
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as expected. 

  



B3. A disk of radius R has a uniform surface charge density σ and is rotated with angular 
frequency ω around the axis z perpendicular to the disk and crossing it at the center. Find the 
magnetic field B on the axis z.   

Solution: 

The total charge in the shaded ring is (2 )dq r drσ π= . The time of 
revolution is 2 /dt π ω= . Therefore, the current in the ring is 

/I dq dt rdrσω= = .  The magnetic field produced by the ring on the z 
axis has only non-vanishing z component which is given by  
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Therefore, the total field produced by the disk is 
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Let 2u r≡  so that 2du rdr=  and hence 
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B4: An electrical circuit consists of a long thin cylindrical conducting shell of radius R and a parallel 
return wire of radius r on axis inside. The current is assumed distributed uniformly throughout the 
cross section of the wire. Calculate the self-inductance per unit length. Assume that the 
permeability of the conductor is µ0. What is the self-inductance if the inner conductor is a thin 
hollow tube of the same radius r?  

 

Solution: 

The system has axial symmetry and the magnetic field can be easily found from Ampere’s law: 
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where φ̂  is a polar unit vector and s is the distance from the axis. Now we calculate the magnetic 
energy per unit width 
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On the other hand, we know that 
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where L is the self-inductance. This leads to 
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If the inner conductor is a thin hollow tube that the magnetic field inside the tube is zero and hence  
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