(a)

$$
\begin{aligned}
& m \frac{d v}{d t}=-c v^{2} \\
& \frac{d v}{v^{2}}=-\frac{c}{m} d t \\
& \frac{1}{v_{0}}-\frac{1}{v}=-\frac{c}{m} t \\
& v=\frac{v_{v}}{1+\frac{v_{0} c}{m} t} \\
& \text { if } v=\frac{v_{0}}{2}, \quad 1+\frac{v_{0} c}{m} t=2 \\
& \quad t=\frac{m}{v_{0} c}=\frac{5 \times 10^{3} / \mathrm{g}}{10^{4} \frac{m}{\mathrm{~s}} \cdot 10^{-5} \frac{k_{g}}{m}}=5 \times 10^{4} \mathrm{~s}=1.4 \mathrm{~h}
\end{aligned}
$$

(b) integrable now

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{v_{0}}{1+\frac{v_{0} c}{m} t} \\
& x=v_{0} \int_{0}^{t} \frac{d t}{1+\frac{v_{0} c}{m} t}=\frac{m}{c} \ln \left(1+\frac{v_{0} c}{m} t\right) \\
& \text { for } t=\frac{m}{v_{0} c} \quad x=\frac{m}{c} \ln 2=5 \times 10^{8} \mathrm{~m} \ln 2=3,47 \times 10^{8} \mathrm{~m}
\end{aligned}
$$

A2

$$
\begin{aligned}
& m \frac{v^{2}}{R}=\mu m g \Rightarrow v=V \mu R g \\
& x=v t, \text { where } \quad h=\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{2 h / g} \\
& \Rightarrow x=\sqrt{\mu R g} \sqrt{\frac{2 h}{g}} \quad
\end{aligned}
$$

$$
x=\sqrt{2 \mu R h}
$$

is miolependent of m_{3} and g 。

$$
\begin{align*}
& \left.M+m_{1}+m_{2}\right) \ddot{x}=1 \tag{1}\\
& (M \cdot \text { accelerations }
\end{align*}
$$

because the accelerations of m_{1}, m_{2} and M are the same when there is no relative motion among them.

$$
m_{1} \ddot{x}=T_{1}
$$

(2)

As there is no relative motion of m_{2} along the x-anis:

As $T_{2}=m_{2} g$ (3)
mass of the pulley is negligible: $T_{1} R-T_{2} R=$ I pulley $\alpha \approx 0$

$$
F_{1}=\bar{r}_{2}
$$

$$
\begin{aligned}
(2) & \Rightarrow \ddot{x}=\frac{T_{1}}{m_{1}}=\frac{T_{2}}{m_{1}}=\frac{m_{2}}{m_{1}} g \\
(4) \dot{ }(1) & \Rightarrow=\frac{m_{2}\left(M+m_{1}+m_{2}\right)}{m_{1}} g
\end{aligned}
$$

Mech
AU

$$
\begin{aligned}
& N \sin \alpha=m g \\
& N \cos \alpha=m \cos ^{2} l \sin \alpha
\end{aligned}
$$

eliminate N

$$
\cot \alpha=\frac{\omega^{2} l \sin \alpha}{g}
$$

$$
\begin{aligned}
& \omega \cdot \cos \alpha=v \\
& \cos ^{2}=\frac{g \cot \alpha}{l \sin \alpha} \quad v^{2}=\omega^{2} l^{2} \sin ^{2} \alpha=g l \cos \alpha \\
& l=\frac{v^{2}}{g \cos \alpha}
\end{aligned}
$$

BR
(a) $\quad V(x)=+F_{0} \int \sin (c x) d x=-\frac{F_{0}}{c} \cos (c x)$
if we choose integration constant 0 , then $V(0)=-\frac{F_{0}}{C}$

(6)

$$
\begin{aligned}
& \frac{m v_{0}^{2}}{2}-\frac{F_{0}}{c}=\frac{m v^{2}}{2}-\frac{F_{0}}{c} \cos (c x) \\
& v=\left[v_{0}^{2}+\frac{2 F_{0}}{m c}(\cos c x-1)\right]^{1 / 2}
\end{aligned}
$$

(c) motion is confined ifs $E<\frac{F_{0}}{C}$

$$
\begin{aligned}
& \frac{m v_{0}^{2}}{2}-\frac{F_{0}}{c}<\frac{F_{0}}{c} \\
& v_{0}^{2}<\frac{4 F_{0}}{m c} \quad \text { or } \quad v_{0}<2 \sqrt{\frac{F_{0}}{m c}}
\end{aligned}
$$

turning ports: $E=T(x)$

$$
\begin{aligned}
& \frac{m v_{0}^{2}}{2}-\frac{F_{0}}{c}=-\frac{F_{0}}{C} \cos c x \\
& x=\frac{ \pm 1}{c} \cos ^{-1}\left(1-\frac{c m v_{0}^{2}}{2 F_{0}}\right)
\end{aligned}
$$

(d) $F \approx-F_{0} C x$
periodic motion with the force courtaat $k=F_{0} C$

$$
\begin{aligned}
& \omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{F_{0} C}{m}} \quad T=2 \pi \sqrt{\frac{m}{F_{0} C}} \\
& v_{0}=A \omega_{0} \rightarrow A=\frac{v_{0}}{\omega_{0}}=v_{0} \sqrt{\frac{m}{F_{0} C}}
\end{aligned}
$$

Meсн 82

(a)

$$
\begin{array}{ll}
h=h_{0} x \sin \theta \quad & V=m g\left(h_{0}-x \sin \theta\right) \\
T=\frac{m \dot{x}^{2}}{2}+\frac{I \tilde{W}^{2}}{2}=\frac{m \dot{x}^{2}}{2}+\frac{I \dot{x}^{2}}{2 a^{2}} & \dot{x}=a \dot{\omega} \\
L=\frac{1}{2}\left(m+\frac{I}{a^{2}}\right) \dot{x}^{2}-m g\left(h_{0}-x \sin \theta\right) & I=\frac{1}{2} m a^{2}
\end{array}
$$

(6)

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{x}}=\left(m+\frac{I}{a^{2}}\right) \dot{x}=\frac{3}{2} m \dot{x} \\
& \frac{\partial L}{\partial x}=m g \sin \theta \\
& \frac{3}{2} m \ddot{x}-m g \sin \theta=0 \quad(1) \\
& \ddot{x}=\frac{2}{3} g \sin \theta \\
& p=\frac{\partial L}{\partial \dot{x}}=\frac{3}{2} m \dot{x} \\
& H=\frac{1}{2}\left(\frac{3}{2} m\right) \dot{x}^{2}+m g\left(h_{0}-x \sin \theta\right)=\frac{1}{2} \frac{p^{2}}{\frac{3}{3} m}+m g\left(h_{0}-x \sin \theta\right) \\
& \dot{x}=\frac{\partial H}{\partial p} \rightarrow \dot{x}=\frac{2}{3} \frac{p}{m} \\
& \dot{p}=-\frac{\partial H}{\partial x} \rightarrow p=m g \sin \theta
\end{aligned}
$$

$$
\text { (e) } \quad p=\frac{2 L}{2 \dot{x}}=\frac{3}{2} m \dot{x}
$$

substituing $\beta=\frac{3}{2} m \dot{x}$, we obtan Eq. (1)
the speed of the shell aet the ugiper point

$$
\text { is } v_{0} \cos 60^{\circ}=\frac{V_{0}}{2}
$$

Conrervcetion of momentum
$2 m \vec{v}=\left(\vec{v}_{1}+\vec{v}_{2}\right) m$ where m is the mass of each fragment

Solve for the distance x between the upper point u and point l

$$
\begin{align*}
& y=x \tan \alpha-\frac{g x^{2}}{2 v_{2}^{2} \cos ^{2} \alpha}=-h \quad \text { (1) } \tag{1}\\
\text { where } h= & \frac{v_{0}^{2} \sin ^{2} 60^{\circ}}{2 g}=\frac{10^{4} \cdot \frac{3}{4}}{20}=375 \mathrm{~m} \quad\left(g \approx 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& \text { Substitute into (1) } \quad \frac{1}{\cos ^{2} \alpha}=1+\tan ^{2} \alpha=\frac{5}{4} \\
- & \frac{x}{2}-\frac{5 x^{2}}{10^{4}} \cdot \frac{5}{4}=-375 \\
& 25 x^{2}+2 \times 10^{4} x-15 \times 10^{6}=0 \\
\rightarrow & x=471 \mathrm{~m}
\end{align*}
$$

The distance between the Rceenching point Lend the upper point is $\frac{v_{0}^{2} \sin \left(2 \cdot 60^{\circ}\right)}{2 g}=\frac{10^{4} \frac{\sqrt{3}}{2}}{20}=433 \mathrm{~m}$ total horizontal distance $471+433=904 \mathrm{~m}$

$$
\begin{aligned}
& \text { (Mech 6落) } \\
& \text { v. } \\
& 7 \\
& 160^{\circ} \\
& \theta=60^{\circ} \\
& \underset{\substack{\alpha \\
2 \\
2}}{\substack{v_{0} / 2}} \\
& \text { for } x \text { andy comproneats we have } \\
& \vec{v}=\left(\frac{v_{0}}{2}, 0\right) \quad \overrightarrow{v_{i}}=\left(0, \frac{v_{0}}{2}\right) \\
& \vec{v}_{2}=2 \vec{v}-\vec{v}_{1}=\left(v_{0},-\frac{v_{0}}{2}\right) \\
& \left|\vec{v}_{2}\right|=v_{4}\left(1+\frac{1}{4}\right)^{1 / 2}=10118 v_{0} \\
& \operatorname{ten} \alpha=-\frac{1}{2} \rightarrow \alpha=-26.6^{\circ}
\end{aligned}
$$

Hen B4)

Choosing the generalized coordinate x_{1}, we have for the potential energy

$$
V=-m g x_{1}-\frac{m^{\prime}}{l} x_{1} g \frac{x_{1}}{2}
$$

- Since x_{1} is the pert of che cord which has become vertical
Therefore the Lagrangian is

$$
L=\left(m+\frac{m^{\prime}}{2}\right) \dot{x}_{2}^{2}+m g x_{1}+\frac{m^{\prime}}{l} g \frac{x_{1}^{2}}{2}
$$

(b) Lags equation

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{x}_{l}}-\frac{\partial L}{\partial x_{l}}=0 \\
& \left(2 m+m^{\prime}\right) \ddot{x}_{1}-m g-\frac{m^{\prime} g}{l} x=0 \\
& \ddot{x}_{1}=\frac{m g}{2 m+m^{\prime}}+\frac{m^{\prime} g}{\left(2 m+m^{\prime}\right) l} x
\end{aligned}
$$

general solution

$$
\begin{aligned}
& \text { general solution } \\
& x_{1}=c_{1} \sinh \omega t+c_{2} \cos h \omega t-\frac{l m}{m^{\prime}}, \omega=\sqrt{\frac{m^{\prime} g}{2 m+m^{\prime}}}
\end{aligned}
$$

with the raitial conditions

$$
\begin{array}{ll}
x_{1}(0)=0, \quad \dot{x}_{1}(0)=0 & \\
0=c_{2}-\frac{e m}{m^{\prime}}, 0=c_{1} & \text { exponential form } \\
x_{1}=\frac{e m}{m^{\prime}}(\cosh \omega t-1) & x_{1}=\frac{e m}{m^{\prime}}\left[\frac{e^{\omega t}+e^{\omega \omega t}}{2}-1\right] \\
\dot{x}_{1}=\omega e \frac{m}{m^{\prime}} \sinh \omega t & \dot{x}_{1}=\omega \ell \frac{m}{m^{\prime}} \frac{e^{\omega t}-e^{-\omega t}}{2}
\end{array}
$$

Note: add l in the denominator in the expression for ω

Preliminary Thermal - May 2024

Easy Problems:

1. In a vacuum tube of pressure $2 \times 10^{-3} \mathrm{~Pa}$, at $27^{\circ} \mathrm{C}$, calculate:
a. number of gas particles per m^{3},
b. volume occupied per particle,
c. mean free path of the particle (assuming the particle has a radius of 155 pm).

Hint: You need to calculate the scattering cross-section and scattering volume. There is a factor of $\sqrt{2}$ when considering the relative motion between particles.

Solution:

a. Using $\mathrm{PV}=\mathrm{nRT}$ or $\mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}$, one can calculate the particle density $\mathrm{N} / \mathrm{V}=\mathrm{P} / \mathrm{k}_{\mathrm{B}} \mathrm{T}=$ $4.83 \times 10^{17} / \mathrm{m}^{3}$.
b. Volume occupied per particle is: $\mathrm{V} / \mathrm{N}=2.07 \times 10^{-18} \mathrm{~m}^{3}$.
c. Scattering cross-section is $4 \pi r^{2}$

Average scattering volume is $4 \pi r^{2} \lambda=\frac{V}{\sqrt{2} N}$. Here the mean free path is reduced by a factor of $\sqrt{2}$ compared to the static case due to the relative motion between two particles $\left|\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right|=$ $\left(\left|\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right|^{2}\right)^{1 / 2}=\left(\left|\overrightarrow{v_{1}}\right|^{2}-2\left|\overrightarrow{v_{1}}\right|\left|\overrightarrow{v_{2}}\right|+\left|\overrightarrow{v_{2}}\right|^{2}\right)^{1 / 2}=\sqrt{2}|\vec{v}|$.
Mean free path is $\lambda=\frac{V}{4 \pi \sqrt{2} r^{2} N}=4.85 \mathrm{~m}$.
2. Find the thermal expansion coefficient $\alpha=(\partial \mathrm{V} / \partial T)_{\mathrm{P}} / \mathrm{V}$, isothermal compressibility $K_{\mathrm{T}}=-(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}} / \mathrm{V}$ for ideal gas.

Solution:

For idea gas, $\mathrm{V}=\mathrm{nRT} / \mathrm{P}$.
So, $\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P},\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{n R T}{P^{2}}$.
$\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P V}=\frac{1}{T}, K_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{1}{V}\left(-\frac{n R T}{P^{2}}\right)=\frac{1}{P}$.
3. A material's density is ρ_{s} and ρ_{l} for solid and liquid phase respectively. Given that the latent heat for the solid $->$ liquid transition is L / kg at pressure P , find the change of internal energy during the transition per kg.

Solution:

According to the first law, $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$.
The work done by the material during the solid->liquid transition is:
$\mathrm{W}=\int \mathrm{PdV}=\mathrm{P} \int \mathrm{dV}=\mathrm{P} \Delta \mathrm{V}=\mathrm{P}\left(1 / \rho_{\mathrm{l}}-1 / \rho_{\mathrm{s}}\right)$.
$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}=\mathrm{L}-\mathrm{P}\left(1 / \rho_{\mathrm{l}}-1 / \rho_{\mathrm{s}}\right)$.

A4
pb \# 6 : Thermodynamics (easy)
a) at constant temperatime T_{0}, the cork is

$$
\begin{aligned}
& \text { a) at constant temperatine } 10 \text {, } \\
& W=\int_{A}^{B} p d V=R T_{0} \int_{V_{0}}^{2 V_{0}} \frac{d V}{V}=R T_{0} \ln 2 \\
& \text { the internal energy is se }
\end{aligned}
$$

As the change of the internal energy is zero, he heat absorbed by the gas

$$
Q=W=R T_{0} \ln 2
$$

b) At constant pressure P, the work is

$$
\begin{aligned}
& \text { b) At constant } \\
& W=\int_{V_{0}}^{2 V_{0}} p d V=p V_{0}=R T_{0} \\
&
\end{aligned}
$$

the un crease of the internal energy is

$$
\begin{aligned}
& \text { increase of the internal } \\
& \Delta U=C_{v} \Delta T=\frac{3}{2} R \Delta T=\frac{3}{2} p \Delta V=\frac{3}{2} p V_{0}=\frac{3}{2} R T_{0}
\end{aligned}
$$

Thus the heat absorbed by the gas is

$$
Q=\Delta U+W=\frac{5}{2} R T_{0}
$$

Hard Problems:

1. A rigid adiabatic container is divided into two parts containing n_{1} and n_{2} mole of ideal gases respectively, by a movable and thermally conducting wall. Their pressure and volume are $\mathrm{P}_{1}, \mathrm{~V}_{1}$ for part 1 and P_{2}, V_{2} for part 2 respectively. Find the final pressure P and temperature T after the two gas reaches equilibrium. Assuming the constant volume specific heats of the two gas are the same.

Solution:

For the initial state $T_{1}=P_{1} V_{1} / n_{1} R, T_{2}=P_{2} V_{2} / n_{2} R$.
After the two gas reaches equilibrium, their volumes can be assumed as $V^{\prime}{ }_{1}$ and $V^{\prime}{ }_{2}$.
Since the internal energy does not change:
$\mathrm{Cvn}_{1}\left(\mathrm{~T}-\mathrm{T}_{1}\right)=\mathrm{Cvn}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}\right)$
So, $\mathrm{T}=\left(\mathrm{n}_{1} \mathrm{~T}_{1}+\mathrm{n}_{2} \mathrm{~T}_{2}\right) /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)=\left(\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{R}+\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{R}\right) /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)$
The pressure of the two gas are the same. Therefore,
$\mathrm{P}=\mathrm{n}_{1} \mathrm{RT} / \mathrm{V}^{\prime}{ }_{1}=\mathrm{n}_{2} \mathrm{RT} / \mathrm{V}^{\prime}{ }_{2}$
Hence, $\mathrm{P}=\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right) \mathrm{RT} /\left(\mathrm{V}^{\prime}{ }_{1}+\mathrm{V}^{\prime}{ }_{2}\right)$
Since $V_{1}+V_{2}=V^{\prime}{ }_{1}+V^{\prime}{ }_{2}$
one has

$$
\begin{aligned}
& \mathrm{P}=\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right) \mathrm{RT} /\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right) \mathrm{R} /\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)\left(\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{R}+\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{R}\right) /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \\
& =\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right) /\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)
\end{aligned}
$$

2. In a throttling process, the Joule-Thompson coefficient is defined as $\mu=(\partial \mathrm{T} / \partial \mathrm{P})_{\mathrm{H}}$.
a. Given the relation $(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}}=\mathrm{V}-\mathrm{T}(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}}$, show that $\mu=\mathrm{V}(\mathrm{T} \alpha-1) / \mathrm{C}_{\mathrm{P}}$, where $\alpha=(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}} / \mathrm{V}$. (Hint, use the cyclic rule)
b. Show that for ideal gas, $\mu=0$.

Solution:

a. Using the cyclic rule, $\left(\frac{\partial T}{\partial P}\right)_{H}\left(\frac{\partial P}{\partial H}\right)_{T}\left(\frac{\partial H}{\partial T}\right)_{P}=-1$.

Therefore, $\left(\frac{\partial T}{\partial P}\right)_{H}=\frac{1}{\left.\left(\frac{\partial P}{\partial H}\right)_{T} \frac{\partial H}{\partial T}\right)_{P}}=\frac{\left(\frac{\partial P}{\partial H}\right)_{T}}{\left(\frac{\partial H}{\partial T}\right)_{P}}$.
Since $\left(\frac{\partial H}{\partial T}\right)_{P}=C_{P}$ and $\left(\frac{\partial H}{\partial P}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{P}$,
$\left(\frac{\partial T}{\partial P}\right)_{H}=\frac{V-T\left(\frac{\partial V}{\partial T}\right)_{P}}{C_{P}}=\frac{V}{C_{P}}\left(1-\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\right)=\frac{V}{C_{P}}(1-T \alpha)$,
where $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$.
b. For ideal gas, $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{1}{T}$. So, $\left(\frac{\partial T}{\partial P}\right)_{H}=\frac{V}{C_{P}}\left(1-\frac{T}{T}\right)=0$
3. The cycle of a hypothetical engine is illustrated below. Let $\mathrm{P}_{\text {low }}=1 \times 10^{6} \mathrm{~Pa}, \mathrm{P}_{\text {high }}=2 \times 10^{6} \mathrm{~Pa}, \mathrm{~V}_{\text {low }}=$ $5 \times 10^{-3} \mathrm{~m}^{3}$, and $\mathrm{V}_{\text {high }}=25 \times 10^{-3} \mathrm{~m}^{3}$. If the energy absorbed by heating the engine is $5 \times 10^{4} \mathrm{~J}$, what is the efficiency of the engine? Calculate the highest and lowest temperature (T_{h} and T_{c}) in the cycle and calculate $1-\frac{T_{c}}{T_{h}}$, assume that the pressure of the $\mathrm{V}_{\text {high }}$ point is $\left(\mathrm{P}_{\mathrm{low}}+\mathrm{P}_{\text {high }}\right) / 2$.

Solution:

We construct the table:

	$\Delta \mathbf{U}$	$\mathbf{Q}=\boldsymbol{\Delta \mathbf { U } + \mathbf { W }}$	\boldsymbol{W}
$1 \rightarrow 2$	$\frac{3}{2}\left(P_{0} V_{h}-P_{h} V_{l}\right)>0$	>0	$\frac{\left(P_{h}+P_{0}\right)\left(V_{h}-V_{l}\right)}{2}>0$
$2 \rightarrow 3$	$\frac{3}{2}\left(P_{l} V_{l}-P_{0} V_{h}\right)<0$	<0	$-\frac{\left(P_{l}+P_{0}\right)\left(V_{h}-V_{l}\right)}{2}<0$
$3 \rightarrow 1$	$\frac{3}{2}\left(P_{h} V_{l}-P_{l} V_{l}\right)>0$	>0	0
Cycle			$\frac{\left(P_{h}-P_{l}\right)\left(V_{h}-V_{l}\right)}{2}$

Assuming ideal gas law, the temperatures are:
$T_{1}=\frac{P_{h} V_{l}}{n R}, T_{2}=\frac{P_{0} V_{h}}{n R}, T_{3}=\frac{P_{l} V_{l}}{n R}$
The heat in to the system:
$Q_{i n}=Q_{12}+Q_{31}=\frac{3}{2}\left(P_{0} V_{h}-P_{l} V_{l}\right)+\frac{\left(P_{h}+P_{0}\right)\left(V_{h}-V_{l}\right)}{2}=50 \mathrm{~kJ}$
Therefore, $P_{0}=1 E 6 \mathrm{~Pa}=P_{l}$. So $T_{2}>T_{1}>T_{3}$
The total work: $W=\frac{\left(P_{h}-P_{l}\right)\left(V_{h}-V_{l}\right)}{2}=20 E-3 * \frac{1 E 6}{2}=10 \mathrm{~kJ}$,
Efficiency: $\eta=\frac{W}{Q_{i n}}=\frac{10}{50}=0.2$
In comparison: $1-\frac{T_{c}}{T_{h}}=1-\frac{T_{3}}{T_{2}}=1-\frac{P_{l} V_{l}}{P_{0} V_{h}}=0.8$

Therme B4
According to Stefan-Beltyman law, power radiated by sun per unit solid angle is

$$
P_{\text {rad }}=\sigma T_{s}^{4} \frac{4 \pi R_{s}^{2}}{4 \pi} \text { where } R_{s} \text { is the sun's } \begin{gathered}
\text { rains }
\end{gathered}
$$

power absorbed by earth is

$$
\begin{aligned}
& P_{\text {abs }}=P_{\text {rad }} \frac{\pi R_{e}^{2}}{d^{2}} \\
& P_{\text {abs }}=\sigma T_{s}^{4} \frac{\pi R_{c}^{2} R_{s}^{2}}{d^{2}}
\end{aligned}
$$

power radiated by earth
$P_{\text {rad }}{ }^{\prime}=\sigma T_{e}^{*} \cdot 4 \pi R_{e}^{2} \quad$ where T_{e} is earths temperature
according to the becackody radiation law

$$
\begin{aligned}
& P_{\text {abs }}=P_{\text {rad }}^{\prime} \\
& \sigma T_{s}^{4} \frac{\pi R_{e}^{2} R_{s}^{2}}{d^{2}}=\sigma T_{e}^{4} \frac{4\left(\pi R_{e}^{2}\right)}{d} \\
& T_{e}^{4}=\frac{R_{s}^{2}}{4 d^{2}} T_{s}^{4} \\
& T_{e}=T_{s} \sqrt{\frac{R_{s}}{2 d}}=6 \times 10^{3} \sqrt{\frac{6.96 \times 10^{5}}{3 \times 10^{8}}}=288 \mathrm{~K} \\
& =15^{\circ} \mathrm{C}
\end{aligned}
$$

