(a)
$$\frac{dv}{dt} = -cv^{2}$$

$$\frac{dv}{v^{2}} = -\frac{c}{m} dt$$

$$\frac{dv}{v^{2}} = -\frac{c}{m} dt$$

$$v = \frac{v}{l + \frac{vc}{m}t}$$
if $v = \frac{v}{2}$, $l + \frac{vc}{m}t = 2$

$$t = \frac{m}{v_{0}c} = \frac{s \times 10^{3} lg}{l^{4} s} = s \times 10^{4} s = 1.4 h$$
(b) integrate how
$$\frac{dv}{dt} = \frac{v}{l + \frac{vc}{m}t}$$

$$x = v_{0} \int_{0}^{t} \frac{dt}{l + \frac{vc}{m}t} = \frac{m}{c} \ln(1 + \frac{vc}{m}t)$$
for $t = \frac{m}{v_{0}c} = \frac{m}{c} \ln(2 = 5 \times 10^{3} m \ln 2 = 3.47 \times 10^{3} m \ln 2$

A2

$$m\frac{v^{2}}{R} = \mu mg \implies v = \sqrt{\mu Rg}$$

$$x = vt, \quad \text{where} \quad h = \frac{1}{2}gt^{2} = t = \sqrt{2h/g}$$

$$\Rightarrow x = \sqrt{\mu Rg} \sqrt{\frac{2h}{g}}$$

$$\Rightarrow x = \sqrt{2\mu Rh} \quad \text{is unodependent of } m_{q} \text{ and } g.$$

A3

 $(M+M_1+M_2)\tilde{\chi}=F(0)$ because the accelerations of
because the accelerations of
M11 M2 and M are the source
When there is no relative motion
When there is no relative among them. As there is no relative motion of mr along the x-axis: $T_2 = M_2 g$ (3)

The pulley is negligible: $T_1 R - T_2 R = I_{pulley} \propto 20$ mass of the pulley is negligible: $(2) \implies \dot{\chi} = \frac{T_1}{m_1} = \frac{T_2}{m_1} = \frac{m_2 g}{m_1} \qquad (4)$ $F = \frac{m_2 (M + m_1 + m_2)}{m_1} g$

Mech

 $V \sin \alpha = mg$ $V \cos \alpha = m \cos^2 \ell \sin \alpha$

Cotx = wel sinx

cua (sina = V

$$Co^2 = \frac{g \cot \alpha}{l \sin \alpha}$$
 $V^2 = W^2 l^2 \sin^2 \alpha = g l \cos \alpha$

$$l = \frac{v^2}{g\cos\alpha}$$

(a)
$$V(x) = + F_0 \int Sin(cx) dx = -\frac{F_0}{C} cos(cx)$$

if we choose integration constant 0, then $V(0) = -\frac{F_0}{C}$

(6)
$$\frac{mv_o^2 - F_o}{2} = \frac{mv^2}{2} - \frac{F_o}{C} \cos(cx)$$

$$v = \left[v_o^2 + \frac{2F_o}{mc} \left(\cos cx - 1\right)\right]^{p_2}$$

(c) motion is contined if
$$E < \frac{F_0}{C}$$
 $\frac{mv_0^4 - F_0}{2} < \frac{F_0}{C}$
 $v_0^2 < \frac{4F_0}{mc}$ or $v_0 < 2\sqrt{\frac{F_0}{mc}}$

terning ports: $E = V(x)$
 $\frac{mv_0^4 - F_0}{2} = -\frac{F_0}{C} cos Cx$
 $x = \frac{4}{C} cos^{-1} (1 - \frac{Cmv_0^2}{2F_0})$

(d)
$$F \sim -F_0CX$$

periodic motion with the force courtant $k=F_0C$
 $W = \sqrt{\frac{k}{m}} = \sqrt{\frac{F_0C}{m}}$
 $T = 2\pi \sqrt{\frac{m}{F_0C}}$
 $V_0 = Acvo \rightarrow A = \frac{v_0}{w_0} = v_0 \sqrt{\frac{m}{F_0C}}$

(7.) _A	Mech B2,
ho	
(a)	$h = h_0 \times \text{sho} V = mg(h_0 - x \sin \theta)$ $T = \frac{m \dot{x}}{2} + \frac{J \dot{\omega}^2}{2} = \frac{m \dot{x}^2}{2a^2} + \frac{J \dot{x}^2}{2a^2}$ $I = \frac{1}{2} m d^2$
	$L = \frac{1}{2} \left(m + \frac{I}{a^2} \right) \hat{x} - mg \left(h_0 - x sh \theta \right) $ (0
(6)	$\frac{2L}{3\dot{x}} = \left(m + \frac{1}{ar}\right)\dot{x} = \frac{3}{2}m\dot{x}$ $\frac{3L}{8x} = mg8in\Theta$
	$\frac{3}{2}mx - mg8h0 = 0 (1)$ $x' = \frac{2}{3}g8h0$
(e)	$P = \frac{2L}{2\dot{x}} = \frac{3}{2}m\dot{x}$ $H = \frac{1}{2}\left(\frac{3}{2}m\right)\dot{x}^2 + mg\left(h_0 - x \sin\theta\right) = \frac{1}{2}\frac{\dot{p}^2}{\frac{3}{2}m} + mg\left(h_0 - x \sin\theta\right)$
	$\dot{V} = \frac{\partial H}{\partial p} \Rightarrow \dot{X} = \frac{\partial P}{\partial m}$ $\dot{V} = \frac{\partial H}{\partial p} \Rightarrow \dot{X} = \frac{\partial P}{\partial m}$ $\dot{V} = \frac{\partial H}{\partial p} \Rightarrow \dot{X} = \frac{\partial P}{\partial m}$
	Substituting $p = \frac{3}{2}m\ddot{x}$, we obtain $Eq_{o}(1)$

Mech By

 $2m\vec{v} = (\vec{v}_i + \vec{v}_i)m$ where m is the

mass of each frequent

for x and y components we have

$$\vec{V} = \left(\frac{v_o}{2}, o\right) \qquad \vec{v_i} = \left(o, \frac{v_o}{2}\right)$$

$$\vec{\mathcal{V}}_2 = 2\vec{\mathcal{V}} - \vec{\mathcal{V}}_4 = (\mathcal{V}_0, -\frac{\mathcal{V}_0}{2})$$

Solve for the distance x between the upper point a and point l

where
$$h = \frac{V_0^2 \sin^2 60^\circ}{2g} = \frac{10^4 \cdot \frac{3}{4}}{20} = 375 \text{ m} \quad \left(g \approx 10 \frac{\text{m}}{\text{s}^2}\right)$$

Substitute into (1) $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha = \frac{5}{4}$

$$-\frac{x}{2} - \frac{5x^2}{10^4} - \frac{5}{4} = -375$$

-> x= 471m

The distance between the Recenching point and the copper point is $\frac{v_0^2 \sin(2.60^\circ)}{29} = \frac{10^4 \sqrt{3}}{20} = 433 \text{ m}$

total horizontal distance 471+433 = 904m

Choosing the generalized coordinate x_i , we have for the potential energy $V = -mgx_i - \frac{m'}{\ell}x_i$

- Since X, is the part of the cord which has become vertical

Therefore the Lagrangian is

$$L = \left(m + \frac{m'}{2}\right) \dot{\chi_i}^2 + mg \chi_i + \frac{m'}{\ell} g \frac{{\chi_i}^2}{2}$$

(b) Lagr equation

$$(2m+m')\ddot{\chi}_i - mg - \frac{m'g}{\ell}\chi = 0$$

$$\chi'_1 = \frac{mg}{2m+m} + \frac{m'g}{(2m+m')\ell} \chi$$

general solution

general solution
$$X_1 = C_1 \sinh \omega t + C_2 \cosh \omega t - \frac{\ell m}{m'}, \quad \omega = \sqrt{\frac{m'g}{2m+m'}}$$

with the initial conditions,

$$\chi_{i}(0) = 0$$
, $\chi_{i}(0) = 0$

$$0=C_2-\frac{\ell m}{m'}$$
, $0=C_1$

$$X_1 = \frac{\ell m}{m!} \left(\cosh \omega t - 1 \right)$$

$$\dot{X}_{l} = w e \frac{m}{m} Snh w t$$

$$0 = C_1 - \frac{em}{m!}, \quad \delta = C_1$$

$$\chi_1 = \frac{em}{m!} \left(\cosh \omega t - 1 \right)$$

$$\chi_2 = \frac{em}{m!} \left(\frac{e^{\omega t} + e^{-\omega t}}{2} - 1 \right)$$

$$\chi_3 = \frac{em}{m!} \left(\frac{e^{\omega t} + e^{-\omega t}}{2} - 1 \right)$$

$$\dot{\chi}_{i} = \omega l \frac{m}{m!} \frac{e^{\omega t} - e^{-\omega t}}{2}$$

Note: add l in the denominator in the expression for ω

Preliminary Thermal - May 2024

Easy Problems:

- 1. In a vacuum tube of pressure 2×10^{-3} Pa, at 27 °C, calculate:
 - a. number of gas particles per m³,
 - b. volume occupied per particle,
 - c. mean free path of the particle (assuming the particle has a radius of 155 pm).

Hint: You need to calculate the scattering cross-section and scattering volume. There is a factor of $\sqrt{2}$ when considering the relative motion between particles.

Solution:

- a. Using PV=nRT or PV = Nk_BT, one can calculate the particle density N/V = P/k_BT = $4.83 \times 10^{17} / m^3$.
- b. Volume occupied per particle is: V/N=2.07×10⁻¹⁸ m³.
- c. Scattering cross-section is $4\pi r^2$

Average scattering volume is $4\pi r^2 \lambda = \frac{V}{\sqrt{2}N}$. Here the mean free path is reduced by a factor of $\sqrt{2}$ compared to the static case due to the relative motion between two particles $|\overrightarrow{v_1} - \overrightarrow{v_2}| = (|\overrightarrow{v_1} - \overrightarrow{v_2}|^2)^{1/2} = (|\overrightarrow{v_1}|^2 - 2|\overrightarrow{v_1}||\overrightarrow{v_2}| + |\overrightarrow{v_2}|^2)^{1/2} = \sqrt{2}|\overrightarrow{v}|$.

Mean free path is $\lambda = \frac{V}{4\pi\sqrt{2}r^2N} = 4.85 \text{ m}.$

2. Find the thermal expansion coefficient $\alpha = (\partial V/\partial T)_P/V$, isothermal compressibility $K_T = -(\partial V/\partial P)_T/V$ for ideal gas.

Solution:

For idea gas, V=nRT/P.

So,
$$\left(\frac{\partial V}{\partial T}\right)_P = \frac{nR}{P}$$
, $\left(\frac{\partial V}{\partial P}\right)_T = -\frac{nRT}{P^2}$.

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{nR}{PV} = \frac{1}{T}, \ K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = -\frac{1}{V} \left(-\frac{nRT}{P^2} \right) = \frac{1}{P}.$$

3. A material's density is ρ_s and ρ_l for solid and liquid phase respectively. Given that the latent heat for the solid -> liquid transition is L/kg at pressure P, find the change of internal energy during the transition per kg.

1

Solution:

According to the first law, $\Delta U=Q-W$.

The work done by the material during the solid->liquid transition is:

$$\begin{split} W = & \int\!\! P dV = P \!\!\int\!\! dV \!\!= P \Delta V \!\!=\!\! P (1/\rho_l \!\!-\! 1/\rho_s). \\ \Delta U = & Q \!\!-\! W \!\!=\!\! L \!\!-\! P (1/\rho_l \!\!-\! 1/\rho_s). \end{split}$$

A4

pb#6: Thermodynamics (easy) a) at constant temperature To, the cook is $W = \int_{A}^{B} \rho dV = RT_{0} \int_{V_{0}}^{2V_{0}} \frac{dV}{V} = RT_{0} \ln 2$ As the change of the internal linery is zero, the heat absorbed by the sas b) At eonstant pressure P, the work is $Q = W = R T_0 ln 2$ $W = \int_{V_{-}}^{2V_{o}} P dV = P^{V_{o}} = \frac{RT_{o}}{m}$ the increase of the internal largy is $\Delta U = C_0 \Delta T = \frac{3}{2} R \Delta T = \frac{3}{2} P \Delta V = \frac{3}{2} P^{V_0} = \frac{3}{2} R T_0$ Thus the heat absorbed by the gas is $Q = \Delta U + W = \frac{5}{2}RT_0$

Hard Problems:

1. A rigid adiabatic container is divided into two parts containing n₁ and n₂ mole of ideal gases respectively, by a movable and thermally conducting wall. Their pressure and volume are P₁, V₁ for part 1 and P₂, V₂ for part 2 respectively. Find the final pressure P and temperature T after the two gas reaches equilibrium. Assuming the constant volume specific heats of the two gas are the same.

Solution:

For the initial state $T_1 = P_1V_1/n_1R$, $T_2 = P_2V_2/n_2R$.

After the two gas reaches equilibrium, their volumes can be assumed as V'1 and V'2.

Since the internal energy does not change:

$$Cv n_1 (T-T_1) = Cv n_2 (T_2-T)$$

So,
$$T = (n_1 T_1 + n_2 T_2)/(n_1 + n_2) = (P_1 V_1/R + P_2 V_2/R)/(n_1 + n_2)$$

The pressure of the two gas are the same. Therefore,

$$P = n_1 RT/V'_1 = n_2 RT/V'_2$$

Hence,
$$P = (n_{2}+n_{1})RT/(V'_{1}+V'_{2})$$

Since
$$V_1 + V_2 = V'_1 + V'_2$$

one has

$$\begin{split} P &= (n_{2+}n_1)RT/(V_1+V_2) = (n_{2+}n_1)R/(V_1+V_2) \; (P_1V_1/R + P_2V_2/R)/(n_1+n_2) \\ &= (P_1V_1 + P_2V_2) \; /(V_1+V_2) \end{split}$$

- 2. In a throttling process, the Joule-Thompson coefficient is defined as $\mu = (\partial T/\partial P)_H$.
 - a. Given the relation $(\partial H/\partial P)_T = V T (\partial V/\partial T)_P$, show that $\mu = V(T\alpha 1)/C_P$, where $\alpha = (\partial V/\partial T)_P/V$. (Hint, use the cyclic rule)
 - b. Show that for ideal gas, $\mu=0$.

Solution:

a. Using the cyclic rule,
$$\left(\frac{\partial T}{\partial P}\right)_H \left(\frac{\partial P}{\partial H}\right)_T \left(\frac{\partial H}{\partial T}\right)_P = -1$$
.

Therefore,
$$\left(\frac{\partial T}{\partial P}\right)_H = \frac{1}{\left(\frac{\partial P}{\partial H}\right)_T \left(\frac{\partial H}{\partial T}\right)_P} = \frac{\left(\frac{\partial P}{\partial H}\right)_T}{\left(\frac{\partial H}{\partial T}\right)_P}$$
.

Since
$$\left(\frac{\partial H}{\partial T}\right)_P = C_P$$
 and $\left(\frac{\partial H}{\partial P}\right)_T = V - T \left(\frac{\partial V}{\partial T}\right)_P$,

$$\left(\frac{\partial T}{\partial P}\right)_{H} = \frac{V - T\left(\frac{\partial V}{\partial T}\right)_{P}}{C_{P}} = \frac{V}{C_{P}}\left(1 - \frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\right) = \frac{V}{C_{P}}\left(1 - T\alpha\right),$$

where
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$
.

b. For ideal gas,
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{1}{T}$$
. So, $\left(\frac{\partial T}{\partial P} \right)_H = \frac{V}{C_P} \left(1 - \frac{T}{T} \right) = 0$

3. The cycle of a hypothetical engine is illustrated below. Let $P_{low} = 1 \times 10^6$ Pa, $P_{high} = 2 \times 10^6$ Pa, $V_{low} = 5 \times 10^{-3} \text{m}^3$, and $V_{high} = 25 \times 10^{-3} \text{m}^3$. If the energy absorbed by heating the engine is 5×10^4 J, what is the efficiency of the engine? Calculate the highest and lowest temperature (T_h and T_c) in the cycle and calculate $1 - \frac{T_c}{T_h}$, assume that the pressure of the V_{high} point is $(P_{low} + P_{high})/2$.

Solution:

We construct the table:

	ΔU	$Q = \Delta U + W$	W
1 → 2	$\frac{3}{2}(P_0V_h - P_hV_l) > 0$	> 0	$\frac{(P_h + P_0)(V_h - V_l)}{2} > 0$
2 → 3	$\frac{3}{2}(P_l V_l - P_0 V_h) < 0$	< 0	$-\frac{(P_l + P_0)(V_h - V_l)}{2} < 0$
3 → 1	$\frac{3}{2}(P_h V_l - P_l V_l) > 0$	> 0	0
Cycle			$\frac{(P_h - P_l)(V_h - V_l)}{2}$

Assuming ideal gas law, the temperatures are:

$$T_1 = \frac{P_h V_l}{nR}, T_2 = \frac{P_0 V_h}{nR}, T_3 = \frac{P_l V_l}{nR}$$

The heat in to the system:

$$Q_{in} = Q_{12} + Q_{31} = \frac{3}{2} (P_0 V_h - P_l V_l) + \frac{(P_h + P_0)(V_h - V_l)}{2} = 50 \ kJ$$

Therefore,
$$P_0 = 1 E6 Pa = P_l$$
. So $T_2 > T_1 > T_3$

The total work:
$$W = \frac{(P_h - P_l)(V_h - V_l)}{2} = 20E - 3 * \frac{1E6}{2} = 10 \text{ kJ}$$
,

Efficiency:
$$\eta = \frac{W}{Q_{in}} = \frac{10}{50} = 0.2$$

In comparison:
$$1 - \frac{T_c}{T_h} = 1 - \frac{T_3}{T_2} = 1 - \frac{P_l V_l}{P_0 V_h} = 0.8$$

Thermo B4

According to Stefan-Boltzman law, power radiated by sun per unit solid angle is

Prad = 6 Ts 4 4 TT Rs where Rs is the seen's radius

power absorbed by earth is

Pass = Prad TIRe where he is the earth's radius

Pass = 67s 4 TTRe 25

power radiated by earth

Prad = 6 Te 471 Re where Te is earth's

temperature

according to the blackbody radiation law

Pags = Prad

$$\frac{7s^{4} \pi R^{2} Rs^{2}}{d^{2}} = 6 Te^{4R\pi Re^{2}}$$

$$\frac{7e^{4} = \frac{Rs^{2}}{4d^{2}} Ts^{4}}{7s}$$

$$\frac{7e}{7e} = \frac{7s \sqrt{\frac{Rs}{2d}}}{2d} = 6 \times 10^{3} \sqrt{\frac{6.96 \times 10^{5}}{3 \times 10^{2}}} = 288 K$$

$$= 15^{\circ}C$$